天堂av无码,久久天天躁夜夜躁狠狠,欧美精品性爱,久久久人妻一区二区三区少妇,亚洲中文字幕无码久久综合网,看亚洲无毛,日本精品国产一区二区三区

學(xué)術(shù)信息

首頁

學(xué)術(shù)報(bào)告:Two-Stage Quadratic Games under Uncertainty and their Solution by Progressive Hedging Algorithms

報(bào)告時(shí)間:2019年9月23日(周一) 16:00-17:00

報(bào)告地點(diǎn):北辰校區(qū)西教五416

報(bào)告題目Two-Stage Quadratic Games under Uncertainty and their Solution by Progressive Hedging Algorithms

報(bào)告嘉賓:張敏 副研究員(中國科學(xué)院新疆生態(tài)與地理研究所)

 

報(bào)告摘要

A model of a two-stage N-person noncooperative game under uncertainty is studied, in which at the first stage each player solves a quadratic program parameterized by other players' decisions and then at the second stage the player solves a recourse quadratic program parameterized by the realization of a random vector, the second-stage decisions of other players, and the first-stage decisions of all players. The problem of finding a Nash equilibrium of this game is shown to be equivalent to a stochastic linear complementarity problem. A linearly convergent progressive hedging algorithm is proposed for finding a Nash equilibrium if the resulting complementarity problem is monotone. For the nonmonotone case, it is shown that, as long as the complementarity problem satisfies an additional elicitability condition, the progressive hedging algorithm can be modified to find a local Nash equilibrium at a linear rate. The elicitability condition is reminiscent of the sufficient second-order optimality condition in nonlinear programming. Various numerical experiments indicate that the progressive hedging algorithms are efficient for mid-sized problems. In particular, the numerical results include a comparison with the best response method that is commonly adopted in the literature.

.

嘉賓介紹

張敏,副研究員,于2018年底入選中國科學(xué)院百人計(jì)劃C類,在中國科學(xué)院新疆生態(tài)與地理研究所工作。本、碩、博均畢業(yè)于天津大學(xué),本科專業(yè)為數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè),并輔修了計(jì)算機(jī)科學(xué)與技術(shù)專業(yè)雙學(xué)位,于2010年獲得理學(xué)學(xué)士與工學(xué)學(xué)士學(xué)位。2010-2016年在天津大學(xué)數(shù)學(xué)系運(yùn)籌學(xué)與控制論專業(yè)碩博連讀,并于2014年獲得國家基金委資助,以聯(lián)合培養(yǎng)博士生的身份公派赴澳大利亞科廷大學(xué)進(jìn)行為期一年的學(xué)習(xí)。20166月于天津大學(xué)獲得博士學(xué)位,同年8月至20196月在澳大利亞科廷大學(xué)跟隨國際著名的優(yōu)化專家孫捷教授做博士后,主要研究方向?yàn)殡S機(jī)變分不等式、逐步對沖算法和稀疏優(yōu)化,曾參與國家自然科學(xué)基金項(xiàng)目3項(xiàng),在SIAM Journal of Optimization,  IEEE Transaction on Information Theory, Applied Mathematics and ComputationSCI期刊上發(fā)表論文12篇。