講座時(shí)間:2023年4月25日(星期二)10:00-12:00
講座地點(diǎn):西教一 102室
講座題目:Federated Learning in Healthcare
講座嘉賓:付華柱 高級研究員
講座嘉賓:
付華柱博士,新加坡科技研究局 (A*STAR) 高性能計(jì)算研究所 (IHPC) 高級研究員 (Senior Scientist)。主要研究方向?yàn)橛?jì)算機(jī)視覺,醫(yī)學(xué)圖像分析,以及可信人工智能等。至今已在 Nature Communications, IEEE TPAMI, IEEE TIP, IEEE TMI 等期刊和會議上發(fā)表論文170 余篇,Google Scholar 引用 1.4 萬余次。曾獲 2021 年 ICME 最佳論文獎、2022 年 MICCAI OMIA Workshop 最佳論文、Stanford 大學(xué) Top 2% Scientists Worldwide等?,F(xiàn)擔(dān)任 IEEE TMI,IEEE TNNLS 和 IEEE JBHI 等期刊編委,以及多個(gè)國際會議的區(qū)域主席。同時(shí)也是 IEEE Bio Imaging and Signal Processing Technical Committee (BISP TC) 技術(shù)委員。
講座簡介:
Federated learning (FL) is an emerging distributed machine learning paradigm that leverages decentralized data from multiple clients to jointly train a shared global model under the coordination of a central server, without sharing the individuals' data. This makes FL surpass traditional parallel optimization to avoid systemic privacy risk. In this talk, I will introduce several works on FL in healthcare. Moreover, I also discuss some open challenges for federated learning.